Process-Property Relationships in Ultrasonic Additive Manufacturing of Lightweight Structures

Adam Hehr
hehr.7@osu.edu

Department of Mechanical and Aerospace Engineering
The Ohio State University

Professor: Dr. Marcelo Dapino

Acknowledgements:

• NSF I/UCRC Program, SVC IAB
• NSF Graduate Research Fellowship Program
• Ohio Third Frontier Wright Project
Talk Overview

• Ultrasonic Additive Manufacturing- UAM
• Bond Formation in UAM
• Welder Energy and Parameters
• Effect of Build Compliance on Effective Weld Power
• Power Compensation
• UAM Process Modeling
• Concluding Remarks
Ultrasonic Additive Manufacturing - UAM

- **Recent technology** that combines:
 - Ultrasonic metal welding
 - Additive manufacturing
 - CNC machining center

- **Low temperature** process:
 - Interface near \(\frac{1}{2} T_{\text{melt}} \)
 - Measureable temp near 100 °C for Al 6061-H18 [1]

- **Enabling** technology for dissimilar metal joining and low temperature applications

Base plate: milling for flatness
UAM Applications and Strengths

Automotive

Aerospace

Efficient Cooling and Embedded Sensing

Multi-Material Joints and Reinforcement

Solid-State Actuation

Embedded Temperature Sensitive Sensors and Electronics

Complex Internal Cooling

Light-Weighting with Dissimilar Materials and Metals

Smart Materials Integration

PVDF in Al

Fiber Optic Cable

SS tube

Carbon Fiber

NiTi

Al

Cu

Ti

Al

NiTi

Al

http://jwst.nasa.gov/

www.dolphin.fr
Bond Formation in UAM

- Recent **advancements** in delivered **power** and **down force** have remedied interface voids, i.e. gapless structures [2]
- Weld microstructure is composed of **recrystallized** small (~1 micron) **equiaxed grains** within narrow region of weld interface (~ 20 micron) [3-4]
- The **degree of recrystallization** is foretelling of the **shear strain** at the interface due to dynamic recrystallization being a function of (i) strain and (iii) temperature [5]

Welder Energy and UAM Parameters

- Controllable Parameters:
 - Vibration amplitude, δ (µm, % of max)
 - Normal force (N)
 - Sonotrode travel speed, V_t (in/min)
 - Baseplate temperature (°F)

- Fixed Parameters:
 - Vibration frequency (~20 kHz)
 - Sonotrode roughness (~7 or 14 micron R_a) and material (tool steel)
 - Tape thickness (~0.006”)

- Typical weld power for Al 6061-H18 is near 2-3 kW
- Typical weld power for as rolled 4130 steel is near 5-7 kW

$$E_{\text{weld}} = \int P \cdot dt = \frac{1}{V_t} \int F \cdot \omega \cdot \delta \cdot dx$$
Effect of Build Compliance on Effective Weld Power

• **Build compliance** refers to the mechanical deformation of the part when subjected to shear force during the UAM process – compliance increases with part height [6]

• Build compliance leads to a decrease in plastic deformation, i.e., a decrease in effective weld power

• **Power compensation** achieved by increasing weld amplitude manually

• **Does power compensation lead to stronger welds?**

• **Approach:**
 - Measured weld power for compensated and uncompensated stack builds
 - **Push-pin** testing to evaluate bond strength
 - **Focused Ion Beam (FIB)** imaging used to analyze interface microstructure
Power Compensation: Push-Pin Testing

- **Comparative test**
- Used to evaluate UAM interfacial **bond strength**
- Successfully used in recent Al 6061-H18 weld study [7].

![Graphic showing comparative test results]

Power Compensation: Weld Microstructure

- Enhanced interface recrystallization with power compensation
Power Compensation: Energy Balance

\[E_{surf} + E_{plastic} = E_{bulk} + E_{recryst} + E_{thermal} \]

- **Energy balance** can be utilized to analyze bonding process
- \(E_{plastic} \) measured remotely via transducer power consumption (\(E_{weld} \))
- \(E_{recryst} \) measured via quantity of new small grains at interface \[^8\]
- Stronger welds achieved with larger \(E_{recryst} \) due to **Hall-Petch** relationship \[^8\]
- First time **weld microstructure** has been correlated with energy input

UAM Process Modeling: LTI Model

Inputs
- Electric current: i
- Shear force: F_s

Linear System
- Welding Assembly

Outputs
- Voltage: V
- Weld velocity: $j\omega\delta$

LTI Model
\[
\begin{bmatrix}
{j\omega\delta}
\end{bmatrix} = \begin{bmatrix}
H_{em} & H_e^* \\
H_m^* & H_{me}^*
\end{bmatrix}
\begin{bmatrix}
i \\
F_s
\end{bmatrix}
\]

Lumped System: Welder Characterization

Lumped System: Welder Operation

- **Electroacoustics theory** [9-12]

UAM Process Modeling: Characterization

- Shear force: High frequency modal hammer
- Weld velocity: Laser vibrometer
- Voltage and current: Linear amplifier
- Frequency response functions: Quattro analyzer
- Boundary conditions: In UAM machine
UAM Process Modeling: Model Fit

- Good agreement with measured and closed form FRFs
- Fit procedure found in literature \cite{9}
LTI model assumption valid?

- Yes, welder dynamics are pseudo-stable during operation
- Measurements support model assumptions
UAM Process Modeling: Shear Force and Efficiency

Shear Force Estimation

\[
i = \frac{P}{i_{ref}} = \frac{P}{P_{ref}} \quad F_S = \frac{H_{em}i - j\omega\delta}{H_m^*}
\]

Efficiency

\[
e = \frac{j\omega\delta * F_S}{P}
\]

Power Control Law

\[
\Delta P = \frac{1}{2\Psi_t} \Delta F_S
\]

- **Shear force** near 2000 N, which is similar to de Vries \(^{[13]}\).
- **Welder efficiency near 82%**, which is near ultrasonic metal welding estimates \(^{[14]}\) and below piezoelectric transducer efficiency \(^{[15]}\).
- Upward frequency shift from UAM build stiffening system.

Conclusion

- UAM enables fabrication of unique materials and products
- Weld power/energy correlation with bond quality
- Weld power as an in-situ process variable
- LTI model which uses shear force as a system input
- In-situ measurements of welder